1. The motor at B winds up the cord attached to the 65-lb crate with a constant speed. Determine the force in rope CD supporting the pulley and the angle θ for equilibrium. Neglect the size of the pulley at C.

This relation may be helpful: $\tan \theta = \sin \theta / \cos \theta$
2. Determine the magnitudes of F_1, F_2, and F_3 for equilibrium of the particle.
3. Determine the moment of the force F about point O. The force has coordinate direction angles of $\alpha = 60^\circ$, $\beta = 120^\circ$, $\gamma = 45^\circ$. Express the result as a Cartesian vector.
4. Replace the loading on the beam by an equivalent resultant force and specify its location, measured from point \(A\).