1. For the pin-connected structure shown, determine the minimum diameter for the pin at joint D if the average shear stress in the pin is limited to 7,500 psi. Note: The pin is in single shear.
2. The stresses shown act at a point on the free surface of a stressed body.
 (a) Determine the principal stresses and the maximum in-plane shearing stress and show these stresses on a properly labeled and oriented sketch (i.e., a single wedge element or two square elements).
 (b) Determine the absolute maximum shear stress. (No sketch required...just the magnitude.)
3. A 60° strain rosette is mounted on the outside of a cylindrical pressure vessel as shown in the figure. The recorded strains are $\varepsilon_a = 80\mu\varepsilon$ and $\varepsilon_b = \varepsilon_c = 275\mu\varepsilon$. If the vessel has an r/t ratio (i.e., inside radius to wall thickness ratio) of 25, find the pressure p in the tank. Assume that the modulus of elasticity is $E = 200$ GPa and Poisson’s ratio is $\nu = 0.30$.

![Delta rosette diagram]
4. The rigid plate shown in the figure pivots at point C and is held by two horizontal rods at points A and B. Each rod has a cross sectional area of 474 mm2 and a modulus of elasticity of $E = 1,140$ MPa. The horizontal rods are both the same length. If a vertical load of $P = 2.2$ kN is applied at point D as shown, find the tension force in Rod A.
5. The 100-mm diameter segment ABC of the shaft is securely connected to the 60-mm diameter segment CD, and the ends of the shaft are fixed to rigid walls. The moduli of rigidity are $G = 40$ GPa for ABC and $G = 80$ GPa for CD. When torque $T_B = 15$ kN-m is applied as shown, determine the maximum shearing stresses τ_{AB}, τ_{BC} and τ_{CD} for the three regions of the shaft.
6. A simply supported beam is loaded as shown.
 (a) Determine the shear force \(V \) and bending moment \(M \) acting at section a-a, which is located 4 ft from pin support A.
 (b) At section a-a, determine the bending stress \(\sigma_x \) and the transverse shear stress \(\tau_{xy} \) at point H, which is located 2 in. above the z centroidal axis.
 (c) Show \(\sigma_x \) and \(\tau_{xy} \) on a stress element for point H.
7. The vertical structural member consists of a steel pipe with an outside diameter of 10 in. and an inside diameter of 9 in. For the loads shown, determine the normal and shear stresses acting at point \(H \), which is located on the \(x \) axis at the lower end of the vertical member. Show the stresses at \(H \) on a stress element.
8. A steel \((E = 29 \times 10^6 \text{ psi} \text{ and } I = 120 \text{ in}^4)\) beam is loaded and supported as shown. Additional support is provided at \(B\) by a \(6 \times 6\)-in. timber \((E = 1.5 \times 10^6 \text{ psi})\) post BD. Determine the load carried by the post if it is unstressed before the 530 lb/ft uniform load is applied to the beam.