Implementing Real-World Examples into the Main Framework of Design Courses

Abner Chen, Ph.D.
Assistant Teaching Professor
Department of Civil, Architectural, and Environmental Engineering
Missouri University of Science and Technology
Rolla, Missouri, USA
chenchi@mst.edu
Why did I do this research?

Capstone Design Course Assessments:
- An ability to apply knowledge of mathematics, science, and engineering
- An ability to design a system, components, or process to meet desired needs
- An ability to identify, formulate, and solve engineering problems
- An ability to function on multi-disciplinary teams
- An ability to communicate effectively
Objective

Civil Engineering

- Structural Engineering
- Geotechnical Engineering
- Environmental Engineering
- Materials Engineering
- Transportation Engineering
- Construction Engineering

Theory -> Practice

MISSOURI S&T
Prerequisite requirements:

- Statics
- Mechanics of Materials
- Structural Analysis
- Structural Design
Learning objective

- Statics
- Mechanics of Materials
- Structural Design
- Structural Analysis
Why did I do this research?

Comparisons of Teaching Methods

- Traditional Teaching Method
 - Deductive

- Proposed Teaching Method
 - Inductive
 1. Inquiry-based learning
 2. Problem-based learning
Deductive Teaching Method
Traditional Teaching Method

Theory → Design formula → Example
Steel Column Design

Theory

Design formula

Example

\[P_E = \frac{\pi^2 EI}{L^2} \]

\[F_{cr} = \left[0.658 \frac{F_y}{F_e} \right] F_y \]

\[F_e = \frac{\pi^2 E}{\left(\frac{KL}{r} \right)^2} \]

Bending about x-axis

Bending about y-axis
Anticipated Learning Outcome

- Mechanics of Materials
- Structural Analysis
- Statics
- Structural Design

Design Project
Inductive Teaching Method
Steel Column Design

- Inductive Teaching Method
 - Inquiry-based learning
 - Discussion – Column strength (Mechanics of Materials)
 - Material properties
 - Cross-sectional area
 - Column will bend when it fails
 - Buckling Theory
 - Design Formula
 \[P_E = \frac{\pi^2 EI}{L^2} \]
Steel Column Design

- Problem-based learning
- Real-world design example
 - Determine loads
 - Load path
 - Determine member force
 - Design
Proposed Teaching Method

- Statics
- Real-World Example
- Mechanics of Materials
- Structural Analysis
- Structural Design

Diagram showing the flow between the elements.
Team Work

- Used Google document to share information and ideas
- Students worked together to solve a real-world design problem
Results

- Help students to:
 - See the big picture
 - See connection between theory and practice
 - Become an effective team player
- See improvements in students’ performance
Summary

- Applied inductive teaching method
 - Inquiry-Based Learning
 - Problem-Based Learning – Real world examples
- Google Document – Think and share
- Teamwork
QUESTIONS?

Contact Information: chenchi@mst.edu